Implementing the Conjugate Gradient Method on a grid computer
نویسندگان
چکیده
We study two implementations of the Conjugate Gradient method for solving large sparse linear systems of equations on a heterogeneous computing grid, using GridSolve as grid middleware. We consider the standard CG algorithm of Hestenes and Stiefel, and as an alternative the Chronopoulos/Gear variant, a formulation that is potentially better suited for grid computing since it requires only one synchronisation point per iteration, instead of two for standard CG. The computational work is divided into tasks which are dynamically distributed over the available resources using a resource–aware data partitioning strategy. We present numerical experiments that show lower computing times and better speed–up for the Chronopoulos/Gear variant. We also identify bottlenecks and suggest improvements to GridSolve.
منابع مشابه
Optimum Shape Design of a Radiant Oven by the Conjugate Gradient Method and a Grid Regularization Approach
This study presents an optimization problem for shape design of a 2-D radiant enclosure with transparent medium and gray-diffuse surfaces. The aim of the design problem is to find the optimum geometry of a radiant enclosure from the knowledge of temperature and heat flux over some parts of boundary surface, namely the design surface. The solution of radiative heat transfer is based on the net r...
متن کاملA Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei
In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملMemory efficient adaptive mesh generation and implementation of multigrid algorithms using Sierpinski curves
We will present an approach to numerical simulation on recursively structured adaptive discretisation grids. The respective grid generation process is based on recursive bisection of triangles along marked edges. The resulting refinement tree is sequentialised according to a Sierpinski space-filling curve, which leads to both minimal memory requirements and inherently cache-efficient processing...
متن کاملAn eigenvalue study on the sufficient descent property of a modified Polak-Ribière-Polyak conjugate gradient method
Based on an eigenvalue analysis, a new proof for the sufficient descent property of the modified Polak-Ribière-Polyak conjugate gradient method proposed by Yu et al. is presented.
متن کامل